Variable-Selection Heuristics in Local Search for SAT

Alex S. Fukunaga*

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, MS 525-3660
Pasadena, CA 91109-8099
alex.fukunaga@jpl .nasa.gov

Abstract

One of the important components of a local search
strategy for satisfiability testing is the variable selec-
tion heuristic, which determines the next variable to
be flipped. In a greedy local search such as GSAT, the
major decision in variable selection is the strategy for
breaking ties between variables that offer the same im-
provement in the number of unsatisfied clauses. In this
paper, we analyze a number of tie-breaking strategies
for GSAT and evaluate the strategies empirically us-
ing randomly generated 3-SAT instances from a hard
distribution of random instances. We find that the
property of fairness, which was proposed in the lit-
erature as being the critical property of a successful
variable strategy, is not a sufficient property, and show
that randomness plays a significant role in the success
of variable selection heuristics.

Introduction

Local search algorithms for propositional satisfiability
such as GSAT (Selman, Levesque, & Mitchell 1992)
have received much attention in recent years because
of the discovery that it is possible to find solutions to
difficult problems which are much larger than those
which are solvable with conventional, systematic ap-
proaches such as the Davis-Putnam procedure (Davis
& Putnam 1960), at the cost of completeness.

The basic schema for a local search agorithm for
satisfiability testing is the following: Initially, a com-
plete assignment of truth values to variables is gen-
erated randomly. Then, the truth values of the vari-
ables are repeatedly flipped in order to find a satisfy-
ing solution, usualy applying some hill-climbing tech-
nigue that tries to minimize the number of clauses that
are left unsatisfied. Since hill-climbing approaches are
susceptible to getting stuck at local minima, various
heuristics for escaping local minima are applied to re-
sume progress once the hill-climbing search becomes
stuck.

The best-known local search agorithm for satisfia-
bility testing is GSAT (Selman, Levesque, & Mitchell

*Copyright ©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved

GSAT

Input: set of clauses o, MAXFLIPS, and MAXTRIES
Output: a satisfying truth assignment of ¢, if found
for i:=1to MAXTRIES
T := a randomly generated truth assignment
for j := 1 to MAXFLIPS
if T satisfies o then return T
P = Choose a propositional variable to flip that
maximizes the increase in total number of clauses
of o satisfied by T.
T :=T with the truth assignment of p reversed
end for
end for
return feilure (no satisfying assignment found)
end

Figure 1: The GSAT Procedure.

1992), shown in Figure 1. A greedy hill-climbing pro-
cedure is repeatedly applied to a randomly generated
initial assignment. In order to escape local minima, af-
ter each MAXFLIPS flips, a new random assignment
is generated, and the greedy-hill climbing procedure
begins again. This is repeated MAXTRIES times (or
until time runs out).

A distinctive feature of GSAT is the particular
method by which a variable is chosen to be flipped. In
the origina formulation of GSAT, Selman et a. spec-
ified that “... the variable whose assignment is to be
changed is chosen at random from those that would
give an equally good improvement .“ Their justification
for this choice was that “such non-determinism makes
it very unlikely that the algorithm makes the same se-
quence of changes over and over.” (Selman, Levesque,
& Mitchell 1992). However no empirical support of
this conjecture was presented.

Gent and Walsh (Gent & Walsh 1992; 1993b)
later questioned the importance of randomness in the
method of picking the variable to be flipped, and pre-
sent ed experimental results using 50-100 variable ran-
dom problems, as well as N-queeens problem instances

and Walsh (Gent & Walsh 1993 b), proposed that a
strategy is fair “...if it is guaranteed to eventually pick
any variable that is offered continually.” They note
that this is a weak definition, since it alows a variable
not to be picked if it presented, say, only every other
time. With respect to the terminology used in this
paper, we define fairness as follows:

Definition 1 A variable selection heuristic H is far
if the followingis true: Given avariable v which is
inserted into a gain bucket b, H guarantees that if b
s continually selected as the highest gain bucket and v
remains in b, then v will eventually be selected (with
probability approaching 1).

The Random heuristic uses a gain bucket that is im-
plemented as an array in which access to any element
takes constant time, and the number of elements in
the array is maintained. At each iteration, an ele-
ment of the array is picked randomly and chosen to
be flipped. This element is then deleted, and result-
ing “hole” in the array is filled in by moving the last
nonempty element of the array into the hole. New
elements are inserted into the first empty eement of
the array. Thus, insertions and removals are done in
constant time. This is a fair strategy, since the prob-
ability of eventualy picking a variable approaches 1 if
the bucket is randomly sampled infinitely many times,

The First-In-First-Out (FIFO) strategy uses a
linked list gain bucket implementation. Variables are
inserted at the tail of the list, and are chosen (removed)
from the head of the list, so both insertion and re-
moval are constant time operations. FIFO is clearly
fair, since a variable that is inserted into a gain bucket
with N variables is guaranteed to be picked after the
gain bucket is chosen at most N + 1 times by GSAT.

The Last-In-First- Out (LIFO) heuristic uses alinked
list gain bucket implementation. Variables are inserted
and removed from the head of the list. Both insertion
and remova take constant time. Intuitively, this is a
poor strategy, since there is too much locality in the
choice of variable — it is possible to cycle among a small
subset of variables at the head of the gain bucket list,
while other variables are continually “stuck” near the
tail of the list and never chosen. LIFO is not a fair
strategy, because even if a variable v is offered contin-
ualy, it is possible to never pick v if a every step a
new element is added to the gain bucket.

Experimental Results

The tie-breaking heuristics described above (Random,
FIFO, LIFO) were evaluated experimentally using for-
mulas generated randomly using the fixed clause length
model (Mitchell, Selman, & Levesque 1992). Three
parameters are controlled: the number of variables N,
the number of literals per clause k, and the number of
clauses M. For a given N and M, a random problem
instance is created by generating M clauses of k vari-
ables, where each clause contains k distinct variables

Paramet s Numbet Solved
Vars [MAXFLIPS | MAXTRIES | Random | FIFO | LIF
50 250 10 246 232 23
100 500 50 174 138 0
150 1500 100 170 84 0
200 2000 250 144 58 0
250 2500 250 130 37 0
300 6000 250 152 12 0
400 8000 450 83 2 0
500 10000 1000 18 1 0

Table 1: Performance of the Random, FIFO, and LIFO
variable selection heuristics on difficult “random 3-SAT in-
stances. The number of instances (out of 500) that were
solved by each strategy given a computational resource
bound of MAXTRIES and MAXFLIPS is shown above.

from N which are negated with probability 0.5. 500
instances of 3-SAT (k= 3 variables per clause) prob-
lem instances were generated, where the R = M/N,
the ratio of the number of clauses to the number of
variables was fixed at 4.3. As shown in (Mitchell, Sel-
man, & Levesque 1992), this generates a distribution
of instances that are difficult to solve. Problems of up
to 500 variables were used.

For each randomly generated problem, GSAT was
run using each of the tie-breaking strategies, where
each run consisted of up to MAXTRIES iterations of
MAXFLIPS flips (the solution was completely random-
ized after every MAXFLIPS flips).

Table 1 shows the results of this experiment. The
number of instances for which satisfying assignments
were found using each tie-breaking strategy is shown.
Note that not al of the problems in the randomly gen-
erated set are satisfiable; according to previous studies
(Mitchell, Selman, & Levesque 1992; Crawford& Au-
ton 1996), approximately half of the 500 instances are
expected to be satisfiable.?

As predicted, the LIFO strategy performed very
poorly. Although the FIFO strategy was competitive
with the randomized strategies for the smaller prob-
lems (50 and 100 variables), it performed relatively
poorly on the larger problem instances. Overall, the
Random strategy performed significantly better than
the two non-random strategies.

Next, we tested the tie-breaking heuristics in the
context of a dlightly different local search, GSAT with
random wak (Selman & Kautz 1993). This is a smple
extension of GSAT which works as follows:

« With probability p, pick a variable occuring in some
unsatisfied clause and flip its truth assignment.

« With probability 1 — p, follow the standard GSAT
scheme, i.e., pick randomly from the list of variables

51t would be possible to run a efficient systematic pro-

cedure such as Tableau (Crawford & Auton 1996) to deter-
mine exactly how many of the smaller instances are actu-
ally satisfiable; however, this was not currently feasible for
a large set of the largest problem instances.

Parameters Number Solved
FIFO-Random Hybrid LIFO-Random Hybrid

Vars MAXFLIPS MAXTRIES FR-0.1 | FR-0.25 FR-0.5 | FR-0.75 [LR-0.1 | LR-0.25 LR-0.5 | LR-0.75
50 250 10 246 251 255 251 146 196 244 243
100 500 50 169 167 189 182 36 110 156 181
150 1500 100 136 156 166 170 20 91 156 172
200 2000 250 112 126 145 153 9 66 132 150
250 2500 250 85 102 122 136 1 35 101 130
300 6000 250 82 104 134 159 1 47 132 160
400 8000 450 32 46 70 86 0 17 63 94
500 10000 1000 4 9 14 15 0 2 10 20

Table 4:

{0.1,, 0.25,0.5, 0.75} on difficult random 3-SAT instances.

Performance of the FIFO-Random and LIFO-Random hybrid variable selection strategies, for p €
(In the table FR-0.1 denotes the FIFO-Random hybrid with

p = 0.1, LR-0.5 denotes the LIFO-Random hybrid with p = 0.5, and so on.) The number of instances (out of 500) that were
solved by each strategy given a computational resource bound of MAXTRIES and M AX FLIPS is shown above.

non-zero are moved from their current gain bucket to
a new gain bucket.

These side effect movements of the variables among
gain buckets can significantly disrupt the FIFO/LIFO
orderings in the gain buckets.

For example, suppose that we are using a FIFO se-
lection strategy, and a gain bucket g contains variables
V1,02, . . .v, (Where V1 was inserted into g first, v2 was
inserted second, and so on). Suppose g is repeatedly of-
fered as the bucket with the highest gain. If there were
no side effects, then the variables would be selected in
the order inserted (v1,v2, . . .Up). However, when side
effects are present, then with every flip, it is possible
that some variables are moved from g, and/or some
new variables are added to g. Obviously, the lower
the average number of side effects per move, the more
likely it is that g is undisturbed by a side effect and
that the variables are selected in the original (FIFO)
order.

Note that if the number of side effects is large with
respect to the number of variables, then the variable se-
lection heuristic becomes relatively unimportant - the
fixed orderings imposed by the FIFO/LIFO strategies
are irrelevant when a large fraction of the variables are
moving in and out of the gain buckets at every flip due
to side effects. The converse of this observation is that
the fixed orderings (FIFO/LIFO) play a more signif-
icant role when the average fraction of the variables
moving due to side effects is low.

It can be shown that on average, the maximum num-
ber of variables that move between gain buckets when
a variable is flipped is independent of the size of the
problem (the number of variables), and is relatively
small for large problems. More formally:

Clam 1 For the class of random k-SAT instances
generated by the fixed clause length model, the aver-
age number of variables moving between gain buckets
is less than (k- 1)kR + 1.

Proof:

Consider the class of random k-SAT instances gen-
erated using the fixed clause length model (defined in
Section). Let v be a variable that is flipped. Let C,

be the set of clauses that contain v. Each clause has
k — 1 variables other than v, so clearly, the number of
variables that move is bounded by (k — 1) |Cy]| + 1.

The expected value of |C,]is M x {(k x I/N) = k x
M/N = kR, so the average number of variables that
move between gain buckets is less than k(k-1)R +1.0

This bound of k(k—-1)R + 1 is independent of N.
As the problem size grows (i.e., N increases), the frac-
tion of the variables that move between gain buckets
on each flip (which is bounded by ((k — 1)kR)/N)
decreases. For smal N, each flip moves a relatively
large fraction of the variables between gain buckets,
compared to large N. This partialy explains why
the performance differences between the variable se-
lection heuristics depends on N: The smaller N is, the
more disruptive each flip is to the gain table structure,
and hence, the less important it is which of the Ran-
dom/FIFO/LIFO strategies are being used.

Finally, it is important to note that although the
analysis above uses the terminology introduced in Sec-
tion (e.g.,, gain buckets), the results are independent
of the particular implementation, and apply in genera
to similar data structures are used in order to enable
the incremental updating of variable gains.®

Discussion

In this paper, we evaluated severa tie-breaking heuris-
tics for selecting variables to flip in GSAT. Randomly
generated formulas from a difficult distribution were
used to empirically compare the performances of the
strategies.

In the context of standard GSAT (without random
wak), we found that randomized tie-breaking heuris-
tics performed best, while the FIFO strategy did rel-
atively poorly, and the LIFO strategy performed very
poorly. It is interesting to compare our results with
that of (Gent & Walsh 1992; 1993b), who concluded
that “.. there is nothing essential about randomness of
picking in GSAT (athough fairness is important)...”.
The poor performance of LIFO (an unfair strategy) is

SAll efficient implementations of GSAT which we are
aware of use a similar incremental updating framework.

